• Добро пожаловать на сайт - wlux.net!

    FAQ по форуму

    1. Все сообщения до группы местный проходят модерацию от 1 минуты до 24 часа

    2. Сообщения учитываються в следующих разделах: Читать

    3.Что-бы скачать вложение нужно 2 сообщения.

    4.Личные переписки работают только с Администрацией форума

    5. Запрещено: Просить скрытый текст , спам, реклама, скам, ддос, кардинг и другая чернуха, нарушать любые законы РФ/СНГ = бан аккаунта

    6. Внимание! Мы не удаляем аккаунты с форума! Будьте внимательны ДО регистрации! Как удалить аккаунт на форуме?!

    5.Не понимаю, как и что тут работает у вас?!Как создавать темы, писать сообщения, как получать реакции. Почему не засчитывает сообщения. Все ответы здесь

This is a mobile optimized page that loads fast, if you want to load the real page, click this text.

Курс [Алексей Кожакин] [Stepik] Машинное обучение - Модуль 1 (Анализ данных) (2024)

Оффлайн

wlux.net

Где волчьи уши, там волчьи зубы.
Команда форума
LV
7
 
20.06.2022
24 401
222
36
Награды
10
Пол
Муж.

Репутация:

  • Автор темы
  • Администратор
  • Модератор
  • Команда форума
  • #1


Данный курс является первым модулем из серии моих курсов по машинному обучению (ML). В этом курсе в качестве задачи будет рассматриваться прогнозирование в футбольной аналитике. Мы сосредоточимся на сборе данных, которые будут использоваться для прогнозирования в следующих модулях. Помимо сбора данных, мы также применим некоторые техники предобработки данных.

Программа курса

1. Введение

О курсе
Среда разработки

2. Сбор данных с использованием парсинга
Выбор источника данных
Выбор метода парсинга
Определение целевых данных
Разработка скрипта парсинга
Библиотека прасинга датасета

3. Обзор данных
Обзор датасета
Библиотеки для анализа данных

4. Очистка данных
Важность и цель очистки данных.
Устранение дубликатов
Методы заполнения пропущенных данных.
Целевая переменная
Входные параметры

5. Валидация данных
Проверка качества данных после очистки и обработки
Проверка точност на моделях
Анализ важности признаков

6. Кластерный анализ
Понижение размерности
Кластерный анализ
Добавление новых параметров
Оценка качества модели после применения кластеризации

7. Нормализация и стандартизация данных
Приведение данных к единообразному формату.
Преобразование категориальных признаков.
Оценка качества модели после нормализации модели

8. Балансировка данных
Статистический анализ
Балансировка данных

Автор: Алексей Кожакин
Мне очень нравится помогать ученикам, изучающим Python, разбираться в сложных моментах и показывать наилучший путь изучения программирования, чтобы они могли стать успешными разработчиками.

 
Онлайн

chesnok_i

Местный
Участник
LV
1
 
08.01.2025
100
0
13
Награды
2
Пол
Муж.

Репутация:

Большое спасибо, очень объёмный курс.
 

Поиск по форуму

Похожие темы:

Данный сайт использует cookie. Вы должны принять их для продолжения использования. Узнать больше....