- 20.06.2022
- 23 868
- 218
- 36
- Награды
- 10
- Пол
- Муж.
Репутация:
- Автор темы
- Администратор
- Модератор
- Команда форума
- #1
Чему Вы научитесь на курсе:
1. Поймете математические термины.
Усвоите основную терминологию, сможете читать сложные статьи по Data Science и получать новые знания без постоянных обращений к поисковику.
2. Разберётесь в математических основах машинного обучения.
Изучите математические основы Machine Learning и узнаете роль чисел, формул и функций в разработке алгоритмов машинного обучения.
3. Расширите свое сознание.
Математика прокачивает мозг и развивает абстрактное мышление. В курсе много задач разного уровня сложности, что позволит вам набить руку и быть готовым к любым вопросам «на засыпку» на собеседовании.
Содержание:
Базовая математика для Data Science
- 01. Начала теории множеств
- 02. Геометрическая прогрессия. Векторная алгебра
- 03. Теория вероятностей. Рациональные уравнения
- 04. Рациональные уравнения. Алгебраические уравнения
- 05. Иррациональные уравнения. Графический способ решения систем
- 06. Неравенства
- 07. Неравенства продолжение
- 08. Функции график и свойства
- 09. Графики функций и их преобразования
- 10. Производная, исследование функций
- 11. Исследование функций. Интреграл
- 12. Контрольная работа
Модуль 1. - Математический анализ
- О курсе
- Введение в модуль
- Теория множеств
- Числовые последовательности
- Пределы числовых функций. Асимптотическое сравнение функций
- Вебинар по решению задач домашней работы
- Непрерывность функции
- Дифференциальное исчисление
- Дифференцируемость функций многих переменных. Поиск экстремумов
- Применения формулы Тейлора
- Определенный интеграл
- Несобственный интеграл
- Интеграл Лебега
- Числовые и функциональные ряды
- Функции многих переменных
- Нахождение наибольшего и наименьшего значений функций на отрезке
- Основные формулы комбинаторики
- Принцип Дирихле
- Перестановки, размещения и сочетания с повторениями
- Консультация по комбинаторике и теории вероятностей
- Основные понятия, классическая модель вероятности
- Непрерывные случайные величины
- Численные характеристики случайных величин
- Основные законы распределения случайных величин
- Моделирование случайных величин с заданным распределением
- Основные теоремы теории вероятностей
- Основные понятия матстатистики. Точечные оценки и их свойства
- Методы построения оценок неизвестных параметров
- Проверка статистических гипотез
- Матрицы и операции над ними
- Определитель квадратной матрицы
- Обратная матрица
- Однородные и неоднородные системы уравнений
- Линейная зависимость и ранг
- Комплексные числа
- Линейные отображения
- Собственные векторы линейного отображения
- Скалярное произведение в линейном пространстве
- Отображения в евклидовом пространстве
- Билинейные и квадратичные формы
- Word2vec
- Градиентный спуск
- Backpropagation
- Случайный лес
- Классификация наблюдений логистическая и пробит регрессии
- Метод ближайших соседей (KNN)
- Классификация наблюдений байесовский классификатор
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.
Последние темы в этом разделе:
- [Иван Аникин, Владимир Бугаевский] [Слёрм] Data Scientist (2024)
- [Дмитрий Скоромнов] Основы системного администрирования (2024)
- [Анна Вичугова, Зоя Степчева] Проектирование сложных API: OpenAPI + AsyncAPI (2024)
- [Глеб Михайлов] [Stepik] SQL для анализа данных (2024)
- [Bogdan Stashchuk] [Udemy] Полный курс по MongoDB (2024)
- [Udemy] Полный учебный курс по Go. С Нуля до Героя (2019) [Engl]
- [Академия АйТи] Тестирование на проникновение и анализ безопасности. Базовый уровень (2024)
- [HTML Academy] Профессиональный онлайн-курс Vite (2024)
- [Дмитрий Чернов] Виртуализация Proxmox VE. Внедрение и эксплуатация. Расширенные возможности. Часть 2 (2024)
- [Udemy] [Рамзай Дупати] [ENG] Полный курс по сетевому взлому - от начинающего до продвинутого (2024)